Uncrossed actions of feline corticospinal tract neurones on hindlimb motoneurones evoked via ipsilaterally descending pathways.
نویسندگان
چکیده
Despite numerous investigations on the corticospinal system there is only scant information on neuronal networks mediating actions of corticospinal neurones on ipsilateral motoneurones. We have previously demonstrated double crossed pathways through which pyramidal tract neurones can influence ipsilateral motoneurones, via contralaterally descending reticulospinal neurones and spinal commissural interneurones. The aim of the present study was to examine the effects of stimulation of pyramidal tract (PT) fibres mediated via ipsilaterally descending pathways and to find out which neurones relay these effects. This was done by using intracellular recordings from 96 lumbar motoneurones in deeply anaesthetized cats. To eliminate actions of fibres descending on the side contralateral to the location of the motoneurones, the spinal cords were hemisected on this side at a low-thoracic level. Stimuli that selectively activated ipsilateral PT fibres evoked EPSPs and/or IPSPs in 34/47 motoneurones tested. These PSPs were evoked at latencies indicating that the most direct coupling between PT neurones and motoneurones in uncrossed pathways is disynaptic. Occlusion and spatial facilitation between actions evoked by stimulation of ipsilateral PT and of reticulospinal tract fibres in the ipsilateral medial longitudinal fascicle (MLF) indicated that PT actions are mediated by reticulospinal neurones with axons in the MLF. However, after transection of the MLF in the caudal medulla, stimulation of the ipsilateral PT continued to evoke EPSPs and IPSPs with characteristics similar to when the MLF was intact (in 15/49 motoneurones) suggesting the existence of parallel disynaptic pathways via other relay neurones.
منابع مشابه
Uncrossed actions of feline corticospinal tract neurones on lumbar interneurones evoked via ipsilaterally descending pathways.
Effects of stimulation of ipsilateral pyramidal tract (PT) fibres were analysed in interneurones in midlumbar segments of the cat spinal cord in search of interneurones mediating disynaptic actions of uncrossed PT fibres on hindlimb motoneurones. The sample included 44 intermediate zone and ventral horn interneurones, most with monosynaptic input from group I and/or group II muscle afferents an...
متن کاملPremotor interneurones contributing to actions of feline pyramidal tract neurones on ipsilateral hindlimb motoneurones.
The aim of the study was to analyse the potential contribution of excitatory and inhibitory premotor interneurones in reflex pathways from muscle afferents to actions of pyramidal tract (PT) neurones on ipsilateral hindlimb motoneurones. Disynaptic EPSPs and IPSPs evoked in motoneurones in deeply anaesthetized cats by group Ia, Ib and II muscle afferents were found to be facilitated by stimulat...
متن کاملNeuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones.
Coupling between pyramidal tract (PT) neurones and ipsilateral hindlimb motoneurones was investigated by recording from commissural interneurones interposed between them. Near maximal stimulation of either the left or right PT induced short latency EPSPs in more than 80% of 20 commissural interneurones that were monosynaptically excited by reticulospinal tract fibres in the medial longitudinal ...
متن کاملIpsilateral actions of feline corticospinal tract neurons on limb motoneurons.
Contralateral pyramidal tract (PT) neurons arising in the primary motor cortex are the major route through which volitional limb movements are controlled. However, the contralateral hemiparesis that follows PT neuron injury on one side may be counteracted by ipsilateral of actions of PT neurons from the undamaged side. To investigate the spinal relays through which PT neurons may influence ipsi...
متن کاملDo spinocerebellar neurones forward information on spinal actions of neurones in the feline red nucleus?
We recently demonstrated that feline ventral spinocerebellar tract (VSCT) neurones monitor descending commands for voluntary movements initiated by pyramidal tract (PT) neurones as well as locomotor movements relayed by reticulospinal (RS) neurones. The aim of the present study was to examine whether VSCT neurones likewise monitor descending commands from the red nucleus (RN). Extracellular rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 580 Pt 1 شماره
صفحات -
تاریخ انتشار 2007